翻訳と辞書
Words near each other
・ Minimal change disease
・ Minimal clinically important difference
・ Minimal Compact
・ Minimal counterexample
・ Minimal coupling
・ Minimal decency
・ Minimal deterrence
・ Minimal effects hypothesis
・ Minimal generating set
・ Minimal genome
・ Minimal group paradigm
・ Minimal ideal
・ Minimal instruction set computer
・ Minimal intervention dentistry
・ Minimal K-type
Minimal logic
・ Minimal Man
・ Minimal mappings
・ Minimal mesangial glomerulonephritis
・ Minimal model
・ Minimal model (set theory)
・ Minimal model program
・ Minimal models
・ Minimal music
・ Minimal nutritional value
・ Minimal pair
・ Minimal polynomial
・ Minimal polynomial (field theory)
・ Minimal polynomial (linear algebra)
・ Minimal prime


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Minimal logic : ウィキペディア英語版
Minimal logic
Minimal logic, or minimal calculus, is a symbolic logic system originally developed by Ingebrigt Johansson. It is a variant of intuitionistic logic that rejects not only the classical law of excluded middle (as intuitionistic logic does), but also the principle of explosion (ex falso quodlibet).
Just like intuitionistic logic, minimal logic can be formulated in a language using →, ∧, ∨, ⊥ (implication, conjunction, disjunction and falsum) as the basic connectives, treating ¬A as an abbreviation for (A → ⊥). In this language it is axiomatized by the positive fragment (i.e., formulas using only →, ∧, ∨) of intuitionistic logic, with no additional axioms or rules about ⊥. Thus minimal logic is a subsystem of intuitionistic logic, and it is strictly weaker as it does not derive the ex falso quodlibet principle \neg A,A\vdash B (however, it derives its special case \neg A,A\vdash \neg B).
Adding the ex falso axiom \neg A\to(A\to B) to minimal logic results in intuitionistic logic, and adding the double negation law \neg\neg A\to A to minimal logic results in classical logic.
Minimal logic is closely related to simply typed lambda calculus via the Curry-Howard isomorphism, i.e. the typing derivations of simply typed lambda terms are isomorphic to natural deduction proofs in minimal logic.
==References==

* Johansson, Ingebrigt, 1936, "(Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus )." ''Compositio Mathematica'' 4, 119–136.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Minimal logic」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.